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ABSTRACT 

We present a Tomonaqa-Schwinqer-Dirac formulation of 

the first quantized free bosonic string theory in which all 

the Virasoro operators have simple geometric meanings. In a 

corresponding second quantized version, the "chordal" gauge 

transformations on the free string field, which generate 

linearized gauge transformations of spacetime fields, become 

natural transformations in an extended loop space. The 

geometrical nature of these transformations may allow them 

to be more easily generalized to the nonlinear 

transformations of the interacting string field theory. 
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Recently there has been some progress in attempts to 

understand the origin of gauge and general covariance in 

string theories [l-31. In the usual formulations, the 

string field $ ['xp(o-$ is a functional of the string 

coordinates Xcr(C) . Here U- labels the points along the 

string. In a first quantized formulation 6, [k *(cjJ is 

the wave functional. A "gauge invariant" action for the 

free string is given by [1,21: 

s -J&2 $-ycy) &(L:- 0 r 3 

where P is a projection operator which projects out fields 

satisfying the Virasoro conditions, i.e.: 

L,?$ :_ 0 , n>G 

for any arbitrary 35. Here L,, are the standard Virasoro 

operators expressed in the Schrodinqer representation of the 

first quantized theory. In a gauge 

L,& = 0 ) 9-x,0 

the equation of motion following from (1) is: 

(Lo--l)@ =o 

In the first quantized picture (4) is the equation for the 

wave function which also satisfies the orthonormal gauge 

constraint given by (3). 
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The field theory defined by equation (1) has a huge 

invariance group -- the group of "chordal" gauge 

transformations[1,2] : 

$ [x&r,;7 -+ ijp [x&dj + i LI E-n IL-, R. llwd C@ 
h70 

where R [x(0-)3 is an arbitrary functional and c-'-, are 

arbitrary parameters. The string field may be expanded in 

terms of component space-time fiel~ds which correspond to the 

various modes of the string. In terms of these component 

fields which represent the massless modes, the above 

transformations for n = 1 become linearized gauge and 

general coordinate transformations [1,2]. 

The Virasoro operators L r\. generate reparametrisations 

of the parameters r and 7 labelling the world sheet in 

the first quantized theory [41. One might wonder whether 

the L, 's also have a natural geometric meaning in loop 

space. To study this question we pass to the Schrodinger 

representatives of the ,!,'s-- i.e. their representatives 

as operators acting on the wave functionals 9 [Xcrd (and 

hence on string fields in the second quantized theory).For 

the open string ,one has [41 : 

tn , 

L, = -$ dcrefnff + a#’ I (6) 
-IL 

(where in (6) the original interval 0 s ",( n has been 

extended to --ngC< 7L in the standard fashion : 
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~~(5) = xpi-5) j From (6) it is 

clear that "half" of theL;s indeed have a simple geometrical 

meaning in loop space [51. These are : 

Q.yL,- L+) = i i 
TL s do-sinnG arxfi--- 

0 
6 x Yd 

CT-) 

which simply generate transformations on ~[x(uU induced 

by reparametrisations of 6 of the form : 

This is satisfying, in the first quantized theory 

~-CL,- Len) do generate 6-reaparmetrisations [41. 

The "other half" : 
n 

LYC+L-fl = / drs &Ylr [-&jz 82 + ca,xyy -@J 

0 

do not have any such geometric meaning. This is not 

surprising; (LA + Len) generate r-dependent 

reparametrisations of TT in the first quantized theory - 

and in our Schrcdinger picture based on a wave functional 

c$[cxPg 1 7 has completely disappeared. 

In this letter we propose a Tomonaga-Schwinger-Dirac 

type formulation of the free bosonic string theory in which 

all the Virasoro generators have natural geometric meanings. 

First, let us briefly recall the usual formulation of 

the string theory [41. The Nambu action is : 

s = -J&b-{( 2p$+ (+gp$y” (9) 
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where X'(F,x) denotes the string coordinate. The action 

(9) is invariant under arbitrary reparametrisations of O- 

and r . This allows to pick a class of coordinate systems 

on the world sheet defined by the orthonormal gauge : 

- (10) 

In this gauge the action becomes : 

s = - gJ& {@$(gj] -. 01, 

r may be treated as a time variable - we shall refer to it 

as the parameter time. The momenta PP which follow from 

the action (9) satisfy first class constraints which may be 

written as : 
+n 

L, -- / 
&elnr(pP+ gj2 . . (19 

-n 

In the orthonormal gauge the hamiltonian is : 

In covariant quantisation one imposes usual commutators and 

a subset of the constraints (12) are imposed as subsidiary 

conditions on the physical states, given by equation (3). 

In the Schrodinger picture, the momenta are represented 

as: 

8 Pyd -3 - i $X5) . ow 
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so that the LL 's are given by equation (6). The states 

are described by wave functionals z [x[O;, ) 23 which 

obey the Schrodinger equation: 

i 

Since Lo is independent of 7 one may make a Fourier 

transform in '7: : 

5 [x@), TJ = Jd-‘e -‘m$5mz rwl 

so that equation (15) becomes: 

CL o - mty rn,,bd =O 

Equation (4) is obtained for W& 1. 

In the above formalism the parameter time 55 plays a 

special role. The state of a string is described by picking 

a constant-y slice on the world sheet and specifying the 

wave functional z [X(.Crj, TJ . Given the initial data on 

any such constant-q line, the wave functional at any other 

later constant- 'ZI line may be obtained by integrating the 

Schrcdinger equation (15). The restriction to straight 

lines of constant Z-- i.e. the same 7 for each value of 

o- -- prevents one from making a r-dependent 

reparametrisation of Y . 

Nambu [61 and Hosotani 171 have proposed string 

equations in which CJ- and % are treated in a symmetrical 

manner. The relationship between these string equations and 
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the standard one discussed above is not very clear. Here we 

adopt a quite different approach. We shall obtain a more 

symmetric situation by considering string wave functionals 

7$[x[o-),T(c)] which are defined on any arbitrary 

space-like line denoted by X(0-) on the world sheet. The 

new wave equation then relates this to the corresponding 

functional on any other space-like line r(o) . This 

question has been addressed in the context of particle field 

theories by Tomonaga [8], Schwinger [9] and Dirac [lo]. Here 

we shall obtain a similar formalism for bosonic strings 

starting from the standard Nambu action and following a 

canonical method discussed by Kuchaz in the context of 

quantum gravity 1111. 

Consider the bosonic string theory in an orthonormal 

gauge, described by equations (10) and (11). cI- and 2 

will be referred to as "flat" coordinates on the world 

sheet. Introduce curvilinear coordinates z"( o( = 0,l): 

5” = yf@,T) = Jsyui) 

where we have used the notation: 

In these coordinates the action (11) is 

where 

s=-f I dk fi 3 @P ~xQp"p w 

3 
dp = aids.@ -. *- 2UL aci 

$ E oLQt&1) 
0 8) 
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Treating 5" as the parameter time, the canonical momenta 

conjugate to Xr are : 

and the hamiltonian density is : 

where T> is the energy-momentum tensor in flat 

coordinates : 

7; z 3’p13J, x; P - + s;. ( 3YakXy) (2-l] 

The crucial point is that the quantity within brackets 

in equation (20) depends only on the coordinates xp, their 

conjugate momenta n r- , their "spatial" derivatives 

Qrfl/as' and the spatial derivatives of FL, a&,' - 

but not on air'/a.t" . The hamiltonian density is thus 

linear in the quantities '>CJ'/aS". The form of the 

Lagrangian density I 

J' -ax, J-Pg+ - K. 

2 77-r J$ .- ($FJ api@ 7-s ) ;gJ (22) 

suggests that CJL (5) may be regarded as dynamical 

variables with their own conjugate momenta : 
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The resulting dynamical system where both 6 and y 

are dynamical variables has a zero hamiltonian. However, 

all the momenta are not independent, but subject to the 

constraints given by equation (23). 

The momenta for Xp are also not all independent, 

because of the orthonormal gauge conditions (101. These may 

be rewritten in terms of our new dynamical variables as : 

I 
7-c h-G* = (a-c/as9 k cacvaS9 [pr *Pc3= 0 -p+ 

where T is the energy momentum tensor defined in equation 

(21). Since the hamiltonian is zero the entire dynamics of 

the system is contained in the constraints (23) and (24). 

The curves of constant 5" denote a family of 

one-dimensional spacelike surfaces on the world sheet. 

Given the initial data on any such surface, equations (23) 

and (24) have to be integrated to yield the dynamical 

---b variables at another surface at a later time 5 . It is 

convenient to express equation (23) in terms of components 

tangential and normal to these constant- 5o surfaces which 

are, respectively : 

gTPr + Dg, & f g+=o 

7 
c 

E+ +- aT ? + L (77q”+(~~,J2)j = 0 
J(a,,a$(y)’ a 5 T aS f a- 2 

(26) 
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Canonical quantisation now proceeds by imposing the 

commutators : 

py~,,&), nV(s,‘,2,;)J.= i’Zpv~(si-~i;) 
[c~(gl,5i!j, 7+s,‘,w] = +iijcs(5i-s,y c2?l 

In the Schrodinger picture the states are described by a 

wave functional : 

(281 

which gives the probability amplitude on the spacelike lines 

5" - -constant. The momenta are represented by: 

RI,, .--3-i &.x;j- ; 
s 5, -+ - 2 -y----- 

6 cTj(59 
(29) 

The equations (25) and (26) are imposed as conditions on the 

wave functional : 

! 
acr- s .xr s ufi 5 - 
Z$i TJZ&J 

+ 34, 6qgj + afi SxWJ y -=c 00) I 

1 ‘Lb- g ars +& -._- 35, jy?Ygj .+ ar; 6 o-(5,) (-25;- +gg J2]$ = 0 (3 7) 

These equations are of the general form: 

a+ z &q 

where the operators (2 act on the variables in which 

specify the spacelike surface in question, while A acts 
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on the real dynamical variables. These operators may be 

shown to obey the set of consistency conditions derived by 

Dirac [lOI. 

The equation (30 ) simply states that 77 is invariant 

under arbitrary reparametrizations of 3 . This allows us 

to pick a parametrization without any loss of generality by 

setting : 
f= o-- 

Denote the resulting wave functional by ~[X@),~F‘I'~~.Solving 

for sq/'&lY from (30 1, equation (31 ) becomes : 

:& =. ’ __.. - ._... 
5: wd -I 2(1- gq-- 

[---“-- 
s X”(d -&I&)( 3yP,y : +(3rx”,j y 

The wave functional is now a functional of k(~d and '?%?-j 

only : it does not depend on _ 6; since the hamiltonian -5 

vanishes. ~TqJ [>i qcd, r&q is precisely the type of string 

wave functional we have been looking for. It gives the 

amplitude for a string to lie along the curve x'&r) on the 

spacelike line denoted by r('r). Equation (32) gives the 

amplitude on a slightly displaced spacelike line 

T(3) f 8rl.d - and may be integrated to obtain ?1/ on 

any other spacelike line. 

We now return to the constraints (24). For the moment 

let us impose them on the wave functional. In the ,t'=CY 

parametrisation one has: 

i &&;, A= Tia,T&) + (%x”,&,] j q-’ = c;‘ ‘(33) 
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(The prefactor in (24) has been ignored since it can never 

be zero if T'(C) denotes a spacelike line). We shall not, 

however, impose the full equation (33), but only its 

"positive frequency" part. This is similar to conventional 

string quantisation where the subsidiary condition (3) is 

imposed only for fl>O [41. For the open string we define 

the operator : 

iQ, - *JiYcr{ CCni7.d Sk) - ~r~.~lnrtvj@~~j&--~+ %*,$&,i 

= ;LnTf &+ -(3&& + 3,x&)) .. ., (34) 

‘- TL 

(with the standard extension to -A .$G ,$ TZ 1. For the 

closed string, we define in addition: 

'g = IL3 e i""&g-l +(~'?&j;.) .t q&&,j @I 

We shall then impose the following condition on 9" : 

(with the additional condition ,yn9 = 0 for the closed 

string). 

The conditions (36) are the analogs of the Virasoro 

conditions. Together with the dynamical equation (32) they 

determine the wave functional. 
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In a second quantized theory based on the functional 

qcX@), r('r)] the operators %?,., now play the role of 

L-3 in the conventional theory. In fact, it may be easily 

verified that the Rip satisfy the standard Virasoro 

alqebra (without the central charge). ( It may be noted 

that instead of the e ,,'s defined above one might consider 

operators obtained by including the prefactor 

-I/('/ f a,T) of equation (24) in the integrands of 

(34) and (35). These operators do not, however, form a 

Virasoro algebra. This, in fact, was the motivation behind 

dropping the prefactor ). However, unlike the f-,,*s , the 
3 h, 's have a clear geometric meaning in the extended loop 

space spanned by Xp(r] and 't/CC) - The action Of 

Rn on r4; contains two pieces. The first piece involves 

8 'y.' 
6 r&II 

(379 

which is the rate of change of ,y under a change of y('r) 

- a &-dependent reparametrisation of y ! The second 

piece 

/&@&--] -+ Gw?) &&, ] IQp (3% 

relates to the change of w under a reparametrisation of 

d . The operators T;p, thus implement r and % 

reparametrisations on the wave functional, and hence on the 

string field in a second quantized theory. 
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When the space-like lines on the world sheet are taken 

to be 

y(y) ~= y ( crrnstantl) 

our formalism reduces to the standard one. The wave 

functional is now 

qj [ x q-j) ., ,7&-J -1 Tj = g [ x YOGI> > -cll 

The rate of change of under a change of -y is given 

which becomes, using equation (x2) and putting ~CJ)= a 

constant : 

?i?-z .= 4 i c&Y [‘- ,ss‘xz(*) s2. -f- (3,x)‘J$ (40) 
37’ 

which is precisely equation (15). The operators G-L 
similarly become L, . 

Rl s are derivative operators in loop space. A qauge 

invariant free string theory based on ?/.,)[x(o-),r(w.lj would 

have chordal invariances of the type : 

f-q&@Jpj)] .+ Qp[X(b),.‘c(.dYj .f ~~~,~-,-QIx(+~u~~ 
72 

‘~ (4 ,) 

which is a string analog of linearized gauge transformation 

in Yang-Mills theories: 

% 
--+ A/(. -i- +” 
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In analogy with Yang-Mills theories, it is not unreasonable 

to speculate that the full non-linear chordal gauge 

transformations - which translate into the non-linear gauge 

anmd general coordinate transformations of the massless 

modes - are obtained by replacing the 
q)n 

's in (41) by 

suitably defined "covariant" derivatives. These non-linear 

chordal invariances would then provide symmetry principles 

for constructing interacting string field theories. Given 

the simple geometrical meaning of the pnts, the 

corresponding covariant extensions might not be too 

difficult to construct. Once the field theory is 

constructed with the fields C$[X(O-),~(V)] one may pass to 

the more standard ( and probably more practical ) 

formulation based on fields G [X&J] by restricting to 

flat spacelike lines as outlined above. 

It is also encouraging to note that the operators T-XI-L 

or -z* do not require the existence of a flat spacetime 

metric 
%y 

for their construction. They should therefore 

be of use in fashioning a string field theory whose 

formulation does not depend on the flat background 

space-time. 

The formulation presented in this paper may be extended 

to include fermionic strings. This, together with various 

other related issues will be reported in a future 

communication [12]. 
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